
Formula1 with Databricks 

Delta Lake 

SHEFALI BISHT



About Me

Shefali Bisht, Data Engineer

https://www.linkedin.com/in/shefali-bisht/

shefalibisht00@gmail.com

https://medium.com/@shefalibisht00

mailto:shefalibisht00@gmail.com


Formula1 Project Overview

Goal: Capture Formula1 race data periodically from an external API and store it so that we can
analyze it in the future.

Technical Stack:

 Delta Lake : Build Lakehouse architecture on top of Data Lakes.

 Azure Databricks : Configure Delta Lake based on our workload patterns and perform ETL.

 Azure Data Lake Storage Gen2 : Store raw, refined and aggregates data (Storage layer).

 Azure Data Factory : Author, scheduled and monitor the ETL pipeline.

 Power BI : Dashboards and reports to derive insights.



Two Workflows

Provisioning Workflow

1. Provision Azure Data Lake Storage Gen2.
2. Provision Azure Databricks.
3. Provision Azure Key Vault
4. Provision Azure Data Factory.
5. Provision Power BI.

Holistic Workflow

1. Create a Azure Databricks notebook 
that will – ingest, clean, transform and 
analyze data from Ergast API

2. Store data as Delta tables in Delta Lake.
3. Orchestrate and automate the entire 

workflow via Azure Data Factory.
4. Connect Power BI to Databricks to 

consume Gold level data for 
visualization and insights.



Formula-1 Data Architecture

C
o

m
p

u
te

S
to

ra
g

e

External 
Data - API

Bronze            Silver             Gold

Extract

Ingest

Transform

ML/AI
Power BI

Orchestrate/Monitor



Why Delta Lake?

 Delta Lake is a project originally developed by databricks and then open sourced under the

Linux Foundation license around late 1990.

 Before, diving into Delta Lake, lets first talk about Data warehouses and Data Lakes…



Data Warehouse

 Data warehouses came into existence in the 1980s when businesses wanted to

make decisions based on all of the data available in an organization in one place,

rather than looking at data in individual departments.

 A data warehouse mainly consisted of operational and external data available

within the organization to make intelligent decisions.

 The data received in a data warehouse is mainly structured as SQL tables, or CSV

files or semi-structured such as JSON or XML files. Data is cleaned, de-duped,

validated, and augmented with business meaning before loading into a warehouse

or data mart.

 They highly aggregated data is then consumed for BI reporting.



Data Warehouse Pitfalls

 By the early 2000s, due to the internet boom, there was a tremendous increase in volume and
velocity of data as well as the variety of the data had started to change as well. We started to see
unstructured data such as videos, images, text files, etc., which were valuable for making decisions.

 However, the data warehouses lacked the support for such unstructured data. Data in a data
warehouse was only loaded after the data quality has been checked and also once it has been
transformed. This meant it took longer to develop a solution to get new data into the warehouse.

 Data warehouses were built on traditional relational databases or MPP (Massive Parallel Processing)
solutions, which meant that they used proprietary file formats and resulted in vendor logins. Also, the
traditional on-premise data warehouses were very difficult to scale or at times impossible, which
resulted in large data migration projects to scale up those databases. Storage was expensive with
large vendors and also it wasn't possible to scale up storage without computing.

 Finally, data warehouses didn't provide sufficient support for data science or ML/AI workloads.



Data Warehouse Pitfalls - Summary

 Inability to handle unstructured data

 Longer to ingest new data

 Propriety data formats and vendor lock-ins

 Difficult to scale

 Expensive storage

 Lack of ML/AI or data science support



Data Lake

 Date lake architecture was aimed at solving the data warehouse pitfalls.

 They can handle structured, semi structured, and unstructured data (~90%
of today’s data). The data received is ingested into a data lake without
any kind of cleansing or transformation, resulting in quicker timescales to
develop solutions and faster injection times.

 Storage like HDFS, ADLS or S3 were really cheap, enabling organizations to
just dump their enormous data at a very low cost.

 Data lakes were built on open source file formats such as Parquet or Avro,
enabling us to use a wide variety of software and libraries to process and
analyze the data. Data science and the machine learning workloads
could use either the raw or transformed data in the data lake.



Data Lake Pitfalls

 Data Lakes were however, very slow in servicing interactive BI reports, and there was a lack of

data governance.

 This made data to be first ETLed into lakes, and then again ELTed into warehouses, creating

complexity, delays, and new failure modes.

 It resulted in a clunky architecture with too many moving parts.



Data Lake Pitfalls - Summary

 No support for ACID transactions. Due to this failed jobs left partially loaded files which had to be cleaned up in
separate processes during each rerun.

 Inconsistent reads making user consume unreliable data.

 Extremely difficult to handle data corrections as data lake offer no support for updates. So developers had to
partition the data and rewrite the entire partition. This resulted in increased development time.

 No data rollback feature. Either we had to rewrite a partition or rewrite an entire table.

 Lack of ability to delete data for regulations like GDPR.

 No history or versioning, which often creating data swamps.

 Poor performance in terms of BI support, interactive query, security or data governance.

 We needed to process streaming data and batch data separately, resulting in complex Lambda architecture.



Delta Lake

 Data Lakehouse architecture is aimed at bringing the best of both data warehouse as well as

data lake. They are designed to provide BI, data science and machine learning support all

together.

 In a nutshell, Delta Lake is an open-source storage layer that brings reliability to data lakes,

providing ACID transactions, scalable metadata handling, auditing, indexing, and unifying

streaming and Batch Workloads, thus eliminating the complex lambda architecture.

 Delta Lakes runs on top of data lakes, and they are fully compatible with Apache Spark APIs.

 The ingested data could then be transformed more efficiently without the need to rewrite an

entire partitions in cases of reprocessing data or rewriting data lakes in case of processing GDP

requests.



Delta Lake - Pros

 Handles all kinds of data

 Uses open source format

 Inexpensive cloud object storage

 ACID support

 Supports all kinds of workloads (BI or ML/AI)

 History and version control

 Simple architecture

 Better performance



Azure ADF pipeline

 Automate databricks notebooks from

Azure data factory.

 Schedule and monitor from the portal



Power BI



Power BI



Thank You!


